VITESSE MOYENNE ET VITESE INTANTANÉE

1. Expérience

Une balle est lâchée d'une certaine hauteur. En fonction du temps t (exprimé en secondes) elle parcourt une distance f(t) (exprimée en mètres).

Cette distance est évaluée à intervalles de temps réguliers, les résultats sont donnés dans le tableau cidessous : Voir l'animation.

t			
f (t)			

2. Tracé

- a) Placer sur une feuille millimétrée, dans un repère d'unité 10 cm, les points correspondant à ce tableau. Tracer une courbe au crayon car elle devra sans doute être modifiée.
- b) D'après vos connaissances, retrouver l'équation de la courbe.
- c) Utilisation du logiciel Excel
- Lancer Excel et reporter le tableau obtenu dans les cellules A2 à B8
- Créer un graphique : nuage de points reliés par lissage. La courbe est elle une droite ?
- La courbe est elle une parabole?

Utiliser graphique \ajouter une courbe de tendance

Type : polynomiale d'ordre 2 options : afficher l'équation sur le graphique.

d) Construction du tableau de valeurs de la fonction sur l'intervalle [0; 0,5] avec un pas de 0,05.

3. Vitesse moyenne

Def : La vitesse moyenne entre les instants t_1 et t_2 est égale à $\frac{f(t_2) - f(t_1)}{t_2 - t_1}$

- a) Calculer la vitesse moyenne de la balle entre les instants $t_1 = 0$ et $t_2 = 0,1$.
- **b)** Calculer la vitesse moyenne de la balle entre les instants $t_1 = 0.1$ et $t_2 = 0.2$.
- c) Calculer la vitesse moyenne de la balle entre les instants $t_1 = 0.4$ et $t_2 = 0.5$.
- d) Sur la feuille de calcul précédente, créer une plage de cellules pour calculer la vitesse moyenne.
- d) Comment interpréter graphiquement ces résultats?

4. Vitesse instantanée

C'est la vitesse que l'on lirait au compteur!? Comment la calculer?

Méthode : On va calculer la vitesse moyenne sur un intervalle de temps très petit au voisinage de la valeur voulue

Exemple : Quelle est la vitesse instantanée à l'instant a = 0,1?

h est un réel (très petit), calculer la vitesse moyenne entre les instants a et a+h.

On prendra pour h les valeurs successives : 0.01; 0.001; 0.0001; 0.00001; 0.000001.

Calculs un peu pénible, nous allons donc utiliser Excel.

Le tableau obtenu avec Excel peut facilement donner la vitesse instantanée pour d'autres valeurs. Il suffit de changer la valeur de *a*

5. Interprétation graphique

A l'aide du tableau de valeur obtenu ici, placer les nouveaux points de la courbe et faire un tracé précis de la courbe.

Que représentent les nombres trouvés dans cette activité?

FIGHE PROFESSEUR

1. Expérience

Une balle est lâchée d'une certaine hauteur. En fonction du temps t (exprimé en secondes) elle parcourt une distance f(t) (exprimée en mètres).

Cette distance est évaluée à intervalles de temps réguliers, les résultats sont notés dans le

t	0	0,1	0,2	0,3	0,4	0,5
f (t)	0	0,05	0,2	0,44	0,78	1,23

2. Tracé

tableau

- a) Placer sur une feuille millimétrée, dans un repère d'unité 20 cm, les points correspondant à ce tableau. Tracer une courbe au crayon car elle devra sans doute être modifiée.
- b) D'après vos connaissances, retrouver l'équation de la courbe.
- c) On va utiliser Excel:

- ☞ ... **1_vit1.xls**
- Lancer Excel et reporter le tableau obtenu dans les cellules A2 à B8
- Créer un graphique : nuage de points reliés par lissage.

La courbe est - elle une droite ? non donc pas du premier degré.

• La courbe est - elle une parabole?

Utiliser graphique \ajouter une courbe de tendance

Type : polynomiale d'ordre 2 options : afficher l'équation sur le graphique. Retrouver la proportionnalité avec le tableau des valeurs de f(t) en fonction de t^2 .

réponse : $f(t) = 4.9 t^2$

Pour la suite on utilisera le modèle mathématique ainsi créé.

On crée donc sur une nouvelle feuille de calcul le tableau de valeurs de la fonction.

3. Vitesse moyenne

Def : La vitesse moyenne entre les instants t_1 et t_2 est égale à $\frac{f(t_2) - f(t_1)}{t_2 - t_1}$

Proposition : créer la plage de cellules pour calculer la vitesse moyenne.

a) Calculer la vitesse moyenne de la balle entre les instants $t_1 = 0$ et $t_2 = 0.1$. Rep: 0.49 m.s⁻¹

b) Calculer la vitesse moyenne de la balle entre les instants $t_1 = 0.1$ et $t_2 = 0.2$. Rep : 1,47 m.s⁻¹

c) Calculer la vitesse moyenne de la balle entre les instants $t_1 = 0.4$ et $t_2 = 0.5$. Rep : 4.41 m.s⁻¹

d) Comment interpréter graphiquement ces résultats?

Rep : le nombre trouvé est le coefficient directeur de la droite passant par les points $M_1(t_1; f(t_1))$ et $M_2(t_2; f(t_2))$.

4. Vitesse instantanée

C'est la vitesse que l'on lirait au compteur!? Comment la calculer?

Méthode : On va calculer la vitesse moyenne sur un intervalle de temps très petit au voisinage de la valeur voulue

Exemple : Quelle est la vitesse instantanée à l'instant a = 0,1? h est un réel (très petit), calculer la vitesse moyenne entre les instants a et a+h. On prendra pour h les valeurs successives : 0,01; 0,0001; 0,0001; 0,00001; 0,000001. 1 vit2.xls (à envoyer aux élèves).

Rep : A l'instant a = 0,1 la vitesse instantanée est de 0,98 m.s⁻¹.

Le tableau obtenu avec Excel peut facilement donner la vitesse instantanée pour d'autres valeurs. Il suffit de changer la valeur de *a*

Rep : A l'instant a = 0.3 la vitesse instantanée est de 2,94 m.s⁻¹.

Rep : A l'instant a = 0.5 la vitesse instantanée est de 4,9 m.s⁻¹.

5. Interprétation graphique

A l'aide du tableau de valeur obtenu ici, placer les nouveaux points de la courbe et faire un tracé précis de la courbe. Que représentent les nombres trouvés dans cette activité ?

Rep : coefficient directeur de la tangente.

6. Notion de fonction dérivée

Quel lien y a t- il entre les valeurs trouvées et la valeur de *t*? On revient sur notre première feuille de calcul pour faire le tableau (et le graphique ?)

7 Complément

Le dossier tangente et dérivée permet de reprendre d'une manière purement formelle la construction d'une courbe et d'une tangente variable à cette courbe en un point donné.